Forecasting Crude Oil Price and Stock Price by Jump Stochastic Time Effective Neural Network Model
نویسندگان
چکیده
The interacting impact between the crude oil prices and the stock market indices in China is investigated in the present paper, and the corresponding statistical behaviors are also analyzed. The database is based on the crude oil prices of Daqing and Shengli in the 7-year period from January 2003 to December 2009 and also on the indices of SHCI, SZCI, SZPI, and SINOPEC with the same time period. A jump stochastic time effective neural network model is introduced and applied to forecast the fluctuations of the time series for the crude oil prices and the stock indices, and we study the corresponding statistical properties by comparison. The experiment analysis shows that when the price fluctuation is small, the predictive values are close to the actual values, and when the price fluctuation is large, the predictive values deviate from the actual values to some degree. Moreover, the correlation properties are studied by the detrended fluctuation analysis, and the results illustrate that there are positive correlations both in the absolute returns of actual data and predictive data.
منابع مشابه
Modeling and Forecasting Effects of Crude Oil Price Changes on the US and UK GDP
       This paper proposes a new forecasting model for investigating relationship between the price of crude oil, as an important energy source and GDP of the US, as the largest oil consumer, and the UK, as the oil producer. GMDH neural network and MLFF neural network approaches, which are both non-linear models, are employed to forecast GDP responses to the oil price changes. The resul...
متن کاملPricing of Commodity Futures Contract by Using of Spot Price Jump-Diffusion Process
Futures contract is one of the most important derivatives that is used in financial markets in all over the world to buy or sell an asset or commodity in the future. Pricing of this tool depends on expected price of asset or commodity at the maturity date. According to this, theoretical futures pricing models try to find this expected price in order to use in the futures contract. So in this ar...
متن کاملOptimizing the Prediction Model of Stock Price in Pharmaceutical Companies Using Multiple Objective Particle Swarm Optimization Algorithm (MOPSO)
The purpose of this study is to optimize the stock price forecasting model with meta-innovation method in pharmaceutical companies.In this research, stock portfolio optimization has been done in two separate phases.The first phase is related to forecasting stock futures based on past stock information, which is forecasting the stock price using artificial neural network.The neural network used ...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012